RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2015

FIRST YEAR [BATCH 2015-18]

MATHEMATICS [Hons]

Date : 14/12/2015 Time : 11 am - 3 pm

Paper:

Full Marks : 100

[Use a separate Answer Book for each Group]

<u>Group - A</u>

Answer **any five** questions :

1.	a)	Let $f: X \to Y$ be a map and $B \subseteq Y$. Prove that $f(f^{-1}(B)) \subseteq B$ and the equality holds if f is surjective.	[3]
	b)	Let ρ be a relation on a set S. Prove that ρ is an equivalence relation if ρ is reflexive and a ρ b, b ρ c implies cpa for all a, b, c \in S.	[2]
2.	-	pose $\mathbb{Q}' = \mathbb{Q} - \{1\}$. Prove that \mathbb{Q}' forms a commutative group with respect to the composition '*' \mathbb{Q}' defined by : $a * b = a + b - ab \forall a, b \in \mathbb{Q}'$.	[5]
3.	Pro	ve that any finite semigroup in which both cancellation laws hold is a group.	[5]
4.	Def	ine a binary composition on $G = \{1, 3, 7\}$ to make it a group. Justify your answer.	[5]
5.	a)	Let S_4 be the set of all permutations on a set $\{1,2,3,4\}$. Prove that there exists at least one element f in S_4 such that f can not be expressed as g^4 for any $g \in S_4$.	[4]
	b)	Let $\alpha = (1, 4, 2, 3)$ and $\beta = (1, 3)(2, 4)$ be two permutations in S ₄ . Compute $\alpha\beta^{-1}$.	[1]
6.	Pro	ve that every subgroup of a cyclic group is cyclic.	[5]
7.	a)	Let $n \in \mathbb{N}$. Construct a group G and a subgroup H such that $[G:H] = n$.	[3]
	b)	Show that S_n is nonabelian if $n > 2$.	[2]
8.	a)	Let (G,*) be a group and $a, b \in G$. If $a^2 = e$ and $a * b^2 * a = b^3$ then prove that $b^5 = e$.	[3]
	b)	Calculate the number of elements of order 2 in a cyclic group of order 10.	[2]
Ans	swer	any five questions :	
9.	a)	Prove that if A be a non-empty set, there is no surjection $\phi: A \to \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the	
	L)	power set of A.	[4]
	b)	State the least upper bound axiom.	[1]
10.	a)	Let S be a nonempty subset of \mathbb{R} bounded below. Suppose ℓ is a lower bound of S such that for each natural number n there exists an element x_n in S satisfying $x_n < \ell + 1/n$. Prove that	
		$\ell = \inf S$, where $\inf S$ denotes the greatest lower bound of S.	[4]
	b)	Find sup A and inf A where $A = \{x \in \mathbb{R} : x^2 < 1\}$.	[1]
11.	a)	Prove that any superset of any dense set in $\mathbb R$ is dense in $\mathbb R$.	[2]
	b)	Prove that the set of all rational numbers is not a closed set.	[3]
12.	a)	Let A be a countable subset of \mathbb{R} . Examine whether $A \cup \left\{ \bigcap_{n=1}^{\infty} \left[-\frac{1}{n+1}, \frac{1}{n+2} \right] \right\}$ is countable.	[3]
	b)	Show that every nonempty open set in \mathbb{R} can be expressed as a union of open intervals.	[2]

- 13. a) If $\lim_{n\to\infty} x_n = \ell$ and a > 0 then prove that $\lim_{n\to\infty} a^{x_n} = a^{\ell}$. [3]
 - Give examples of two nonconvergent sequences $\{x_n\}$ and $\{y_n\}$ such that the sequence $\{x_ny_n\}$ is b) convergent. [2]
- 14. Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^{n+1} \right\}$ is a monotone decreasing sequence and convergent. [5]
- 15. Let D be a subset of \mathbb{R} and $f: D \to \mathbb{R}$ be a function. Let c be a limit point of D and $\ell \in \mathbb{R}$. Then prove that $\lim_{x\to c} f(x) = \ell$ if and only if for every sequence $\{x_n\}$ in $D - \{c\}$ converging to c, the sequence $\{f(x_n)\}$ converges to ℓ . [5]
- 16. a) Prove that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$.
 - b) Let $f:(0,1) \to \mathbb{R}$ be a function such that

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is irrational} \end{cases}$$

Prove that $\lim_{x \to a} f(x)$ does not exist if $a \in [0,1]$.

Group - B

Answer any five questions :

17. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines, then prove that the equation to the third pair of straight lines passing through the points where these lines meet the axes is $ax^2 - 2hxy + by^2 + 2gx + 2fy + c + \frac{4fg}{2}xy = 0$. [5]

18. Find the polar equation of the chord of the conic $\frac{\ell}{r} = 1 - e\cos(\theta + \delta)$ joining the points on the conic with vectorial angles $\alpha - \beta$ and $\alpha + \beta$. [5]

- 19. Show that the pole of any tangent to the hyperbola $xy = c^2$ with respect to the circle $x^2 + y^2 = a^2$ lies on concentric and similar hyperbola. [5]
- 20. Reduce the equation : $3(x^2 + y^2) + 2xy = 4\sqrt{2}(x + y)$ to its canonical form. Name the conic and find the eccentricity of the conic. [3+1+1]

21. Show that the tangents at the extremities of conjugate diameters of the ellipse $\frac{x^2}{p^2} + \frac{y^2}{p^2} = 1$ intersect

on the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$$
.

- 22. Let D, E, F be respectively the midpoints of the sides BC, CA, AB of the triangle ABC. Show that the vector area of $\triangle ABC$ is four times that of $\triangle DEF$. [5]
- 23. Prove the formula : $(\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$ and use it to show that $sin(A+B)sin(A-B) = sin^2 A - sin^2 B$ for any two acute angles A and B. [2+3]
- 24. Find the shortest distance between the two lines through A (6, 2, 2) and C (-4, 0, -1) and parallel to the vectors $\hat{i} - 2\hat{j} + 2\hat{k}$ and $3\hat{i} - 2\hat{j} - 2\hat{k}$ respectively. Find the points where the lines meet the shortest distance line. [3+1+1]

[5]

[5]

Answer any five questions :

- 25. Prove that if $y = \frac{\ell x + m}{px + q}$ where ℓ, m, p, q are arbitrary constants then it satisfies the differential equation $2\frac{dy}{dx} \cdot \frac{d^3y}{dx^3} = 3\left(\frac{d^2y}{dx^2}\right)^2$ and when $\ell + q = 0$ then it satisfies $(y x)\frac{d^2y}{dx^2} = 2\left(1 + \frac{dy}{dx}\right)\frac{dy}{dx}$. [5]
- 26. Show that the equation $(P+Qx)\frac{dy}{dx} = R + Qy$, where P, R are homogeneous functions in x and y of degree n and Q is a homogeneous function in x and y of degree m, can be solved by the substitution y = vx. [5]
- 27. Reducing the differential equation $x^2p^2 + py(2x + y) + y^2 = 0$ to Clairaut's form by the substitution y = u, xy = v, solve it and prove that y + 4x = 0 is a singular solution. [5]
- 28. Prove that the system of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self orthogonal. [5]
- 29. Solve, by the method of variation of parameters, the equation $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$. [5]
- 30. Using the method of undetermined coefficients, solve the equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 3y = x^3 + \sin x$. [5]
- 31. State the sufficient condition of linear independence of the solutions of a general linear differential equation of order n. Show that the equation $x^3 \frac{d^3y}{dx^3} 6x \frac{dy}{dx} + 12y = 0$ has three linearly independent solutions of the form $y = x^r$. [1+4]

32. Solve:
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right).$$
 [5]

– × ——